
PROCESSOR ORGANIZATION

Figure below is a simplified view of a processor, indicating its connection to the rest of the system

via the system bus.

The ALU does the actual computation or processing of data. The control unit controls the movement

of data and instructions into and out of the processor and controls the operation of the ALU. In addition,

the figure shows a minimal internal memory, consisting of a set of storage locations, called registers.

Figure below depicts is a slightly more detailed view of the processor.



The  data  transfer and  logic  control  paths  are  indicated,  including  an  element  labeled  internal

processor  bus.  This  element  is  needed to transfer  data  between the various  registers  and  the ALU

because the ALU in fact operates only on data in the internal processor  memory. The figure also shows

typical basic elements of the ALU. Note the similarity between the internal structure of the computer as

a whole and the internal structure of the processor. In both cases, there is a small collection of major

elements (computer: processor, I/O, memory; processor: control unit,ALU, registers) connected by data

paths

REGISTER ORGANIZATION

At higher levels of the hierarchy, memory is faster, smaller, and more expensive (per  bit). Within the

processor, there is a set of registers that function as a level of memory above main memory and cache in

the hierarchy. The registers in the processor perform two roles:

• User-visible registers: Enable the machine- or assembly language programmer to minimize main

memory  references  by  optimizing  use  of  registers.

• Control and status registers: Used by the control unit to control the operation of the processor and by

privileged, operating system programs to control the execution of programs.

User-Visible Registers

A user-visible register is one that may be referenced by means of the machine language that the

processor executes. We can characterize these in the following categories:

•General purpose

• Data

• Address

• Condition codes

General-purpose registers can be assigned to a variety of functions by the programmer. Sometimes

their use within the instruction set is orthogonal to the operation. That is, any general-purpose register

can  contain  the  operand  for  any  opcode. This  provides  true  general-purpose  register  use.  Often,

however, there are restrictions. For example, there may be dedicated registers for floating-point and

stack operations.



In some cases, general-purpose registers can be used for addressing functions (e.g., register indirect,

displacement). In other cases, there is a partial or clean separation between data registers and address

registers.

Data registers may be used only to hold data and cannot be employed in the calculation of  an

operand address.

Address registers may themselves be somewhat general  purpose,  or they may be devoted to a

particular addressing mode. Examples include the following:

• Segment pointers: In a machine with segmented addressing, a segment register holds the address 

of the base of the segment. There may be multiple registers: for example, one for the operating system 

and one for the current process.

• Index registers: These are used for indexed addressing and may be auto indexed.

• Stack pointer: If there is user-visible stack addressing, then typically there is a dedicated register that 

points to the top of the stack. This allows implicit addressing; that is, push, pop, and other stack 

instructions need not contain an explicit stack operand.

A final category of registers, which is at least partially visible to the user, holds condition codes (also

referred to as flags). Condition codes are bits set by the processor hardware as the result of operations.

For  example,  an arithmetic operation may produce a positive, negative,  zero,  or  overflow result.  In

addition to the result itself being stored in a register or memory, a condition code is also set. The code

may subsequently be tested as part of a conditional branch operation. Condition code bits are collected

into one or more registers. Usually, they form part of a control register. Generally, machine instructions

allow these bits to be read by implicit reference, but the programmer cannot alter them.

Control and Status Registers

There  are  a  variety  of  processor  registers  that  are  employed  to  control  the  operation of  the

processor. Most of these, on most machines, are not visible to the user. Some of them may be visible to

machine instructions executed in a control or operating system mode.

Four registers are essential to instruction execution:

• Program  counter  (PC):  Contains  the  address  of  an  instruction  to  be  fetched

• Instruction  register  (IR):  Contains  the  instruction  most  recently  fetched



• Memory  address  register  (MAR):  Contains  the  address  of  a  location  in  memory

• Memory buffer register (MBR): Contains a word of data to be written to memory or the word most

recently read

The four registers just mentioned are used for the movement of data between the processor and

memory. Within the processor, data must be presented to the ALU for processing. The ALU may have

direct  access to the MBR and user-visible registers.  Alternatively,  there  may be additional  buffering

registers at the boundary to the ALU; these registers serve as input and output registers for the ALU and

exchange data with the MBR and user-visible registers.

Many processor designs include a register or set of registers, often known as the program status 

word (PSW), that contain status information. The PSW typically contains condition codes plus other 

status information. Common fields or flags include the following:

• Sign: Contains the sign bit of the result of the last arithmetic operation.

• Zero: Set when the result is 0.

• Carry: Set if an operation resulted in a carry (addition) into or borrow (subtraction) out of a high-order 

bit. Used for multiword arithmetic operations.

• Equal: Set if a logical compare result is equality.

• Overflow: Used to indicate arithmetic overflow.

• Interrupt Enable/Disable: Used to enable or disable interrupts.

• Supervisor: Indicates whether the processor is executing in supervisor or user mode. Certain privileged

instructions can be executed only in supervisor mode, and certain areas of memory can be accessed only

in supervisor mode.

Sample microprocessor register organizations are illustrated bellow.



CONTROL OF THE PROCESSOR

Functional Requirements

The functional  requirements  for  the control  unit  are  those functions that the control  unit  must

perform. A definition of these functional requirements is the basis for the design and implementation of

the control unit. The following three-step process leads to a characterization of the control unit:

1. Define the basic elements of the processor.

2. Describe the micro-operations that the processor performs.

3. Determine the functions that the control unit must perform to cause the micro-operations to be 

performed.

The basic functional elements of the processor are the following:

• ALU

• Registers

• Internal data paths

• External data paths

• Control unit



The ALU is the functional essence of the computer. Registers are used to store data internal  to

the processor.  Some  registers  contain  status  information  needed  to  manage  instruction sequencing

(e.g., a program status word). Others contain data that go to or come from the ALU, memory, and I/O

modules.  Internal  data  paths  are  used  to  move  data

between registers and between register and ALU. External data paths link registers to memory and I/O

modules, often by means of a system bus. The control unit causes operations to happen within the

processor. The execution of a program consists of operations involving these processor elements. These

operations consist of a sequence of micro-operations.

All micro-operations fall into one of the following categories:

• Transfer data from one register to another.

• Transfer data from a register to an external interface (e.g., system bus).

• Transfer data from an external interface to a register.

• Perform an arithmetic or logic operation, using registers for input and output.

All  of  the micro-operations needed to perform one instruction cycle,  including all  of  the micro-

operations to execute every instruction in the instruction set, fall into one of these categories.

The control unit performs two basic tasks:

• Sequencing:  The  control  unit  causes  the  processor  to  step  through  a  series

of  micro-operations  in  the  proper  sequence,  based  on  the  program  being

executed.

• Execution: The control unit causes each micro-operation to be performed.

The preceding is a functional description of what the control unit does. The key to how the control

unit operates is the use of control signals.

Control Signals

The following figure shows a general model of the control unit, showing all of its inputs and outputs.



The inputs are,

• Clock: This is how the control unit “keeps time.” The control unit causes one micro-operation (or a 

set of simultaneous micro-operations) to be performed for each clock pulse. This is sometimes 

referred to as the processor cycle time, or the clock cycle time.

• Instruction register: The opcode and addressing mode of the current instruction are used to 

determine which micro-operations to perform during the execute cycle.

• Flags: These are needed by the control unit to determine the status of the processor and the 

outcome of previous ALU operations. For example, for the increment-and-skip-if-zero (ISZ) 

instruction, the control unit will increment the PC if the zero flag is set.

• Control signals from control bus: The control bus portion of the system bus provides signals to the 

control unit.

The outputs are as follows:

• Control signals within the processor: These are two types: those that cause data to be moved from

one  register  to  another,  and  those  that  activate  specific ALU  functions.

• Control signals to control bus: These are also of two types: control signals to memory, and control

signals to the I/O modules.

Three types of control signals are used: those that activate an ALU function, those that activate a

data path, and those that are signals on the external system bus or other external interface. All of these

signals are ultimately applied directly as binary inputs to individual logic gates.



The control unit keeps track of where it is in the instruction cycle. At a given point, it  knows that the

fetch  cycle  is  to  be  performed  next.  The  first  step  is  to  transfer the  contents  of  the  PC  to

the MAR.The control unit does this by activating the control signal that opens the gates between the bits

of the PC and the bits of the MAR. The next step is to read a word from memory into the MBR and

increment the PC.The control unit does this by sending the following control signals simultaneously:

• A control signal that opens gates, allowing the contents of the MAR onto the address bus

• A memory read control signal on the control bus

• A control signal that opens the gates, allowing the contents of the data bus to be stored in the 

MBR

• Control signals to logic that add 1 to the contents of the PC and store the result back to the PC

Following this, the control unit sends a control signal that opens gates between the MBR and the IR.

This  completes  the  fetch  cycle  except  for  one  thing:  The  control  unit  must  decide  whether  to

perform an indirect cycle or an execute cycle next. To decide this, it  examines the IR to see if an indirect

memory reference is made.

The indirect and interrupt cycles work similarly. For the execute cycle, the control unit begins by

examining the opcode and, on the basis of that, decides which sequence of micro-operations to perform

for the execute cycle.

A Control Signals Example

Figure below illustrates the example.



This is a simple processor with a single accumulator (AC).  The data paths between elements are

indicated.  The  control  paths  for  signals emanating  from  the  control  unit  are  not  shown,  but  the

terminations of control signals are labeled C i and indicated by a circle. The control unit receives inputs

from the clock, the instruction register, and flags. With each clock cycle, the control unit reads all of its

inputs and emits a set of control signals. Control signals go to three separate destinations:

• Data paths: The control unit controls the internal flow of data. For example,  on instruction fetch,

the contents of the memory buffer register are transferred to the instruction register. For each path to

be controlled, there is a switch (indicated by a circle in the figure). A control signal from the control unit

temporarily  opens  the  gate  to  let  data  pass.

• ALU: The control  unit controls  the operation of the ALU by a set of control signals.  These signals

activate  various  logic  circuits  and  gates  within the  ALU.

• System bus: The control unit sends control signals out onto the control lines of  the system bus (e.g.,

memory READ).

The  control  unit  must  maintain  knowledge  of  where  it  is  in  the  instruction cycle.  Using  this

knowledge, and by reading all of its inputs, the control unit emits a sequence of control signals that

causes micro-operations to occur. It uses the clock pulses to time the sequence of events, allowing time

between events for signal levels to stabilize. Table below indicates the control signals that are needed

for some of the micro-operation sequences described earlier. (For simplicity, the data and control paths

for incrementing the PC and for loading the fixed addresses into the PC and MAR are not shown.)



It is worth pondering the minimal nature of the control unit. The control  unit is the engine that runs

the entire computer. It does this based only on knowing the instructions to be executed and the nature

of the results of arithmetic and logical operations (e.g., positive, overflow, etc.). It never gets to see the

data  being processed  or  the actual  results  produced.  And it  controls  everything  with  a  few  control

signals to points within the processor and a few control signals to the system bus.



Internal Processor Organization

The CPU with internal bus can be illustrated as below.

A single internal bus connects the ALU and all  processor registers. Gates and control  signals are

provided for  movement  of  data  onto and off the bus from each register.  Additional  control  signals

control data transfer to and from the system (external) bus and the operation of the ALU.

Two new registers, labeled Y and Z, have been added to the organization.  These are needed for the

proper operation of  the ALU. When an operation involving two operands is  performed, one can be

obtained from the internal bus, but the other must be obtained from another source. The AC could be

used for this purpose, but this limits the flexibility of the system and would not work with a processor

with multiple general-purpose registers. Register Y provides temporary storage for the other input. The

ALU is  a  combinatorial  circuit with  no internal  storage.  Thus,  when control  signals  activate  an  ALU

function, the input to the ALU is transformed to the output. Thus, the output of the ALU cannot be

directly connected to the bus, because this output would feed back to the input. Register Z provides



temporary output storage. With this arrangement, an operation to add a value from memory to the AC

would have the following steps:

t1: MAR ← (IR(address))

t2: MBR ← Memory

t3: Y ← (MBR)

t4: Z ← (AC) + (Y)

t5: AC ← (Z)

The  use  of  common  data  paths  simplifies  the  interconnection  layout  and  the  control  of  the

processor. Another practical reason for the use of an internal bus is to save space.

 

MICRO-OPERATIONS

In computer central processing units, micro-operations (also known as micro-ops) are the functional

or  atomic,  operations  of  a  processor.  These  are  low  level  instructions  used  in  some  designs  to

implement complex machine instructions. They generally perform operations on data stored in one or

more  registers.  They  transfer  data  between  registers  or  between  external  buses  of  the  CPU,  also

performs arithmetic and logical operations on registers.

In executing a program, operation of a computer consists of a sequence of instruction cycles, with

one machine instruction per  cycle.  Each instruction cycle  is  made up of  a  number of  smaller  units

– Fetch, Indirect, Execute and Interrupt cycles. Each of these cycles involves series of steps, each of which

involves the processor registers. These steps are referred as micro-operations. the prefix micro refers to

the fact that each of the step is very simple and accomplishes very little.

Figure below depicts constituent elements of a program execution.



The Fetch Cycle

The fetch cycle occurs at the beginning of each in-]struction cycle and causes an instruction to be

fetched from memory. Four registers are involved:

• Memory address register (MAR): Is connected to the address lines of the system bus. It specifies 

the address in memory for a read or write operation.

• Memory buffer register (MBR): Is connected to the data lines of the system bus. It contains the 

value to be stored in memory or the last value read from memory.

• Program counter (PC): Holds the address of the next instruction to be fetched.

• Instruction register (IR): Holds the last instruction fetched.

The  simple  fetch  cycle  actually  consists  of  three  steps  and  four  micro  operations.  Each  micro-

operation involves the movement of data into or out of a register. So long as these movements do not

interfere with one another, several of them can take place during one step, saving time. Symbolically,

we can write this sequence of events as follows:

t 1 : MAR ← (PC)

t 2 : MBR ← Memory

PC ← (PC) + I

t 3 : IR ← (MBR)

where I is the instruction length. We assume that a clock is available for timing purposes and that it

emits regularly spaced clock pulses. Each clock pulse defines a time unit.Thus, all time units are of equal



duration. Each micro-operation can be performed within the time of a single time unit. The notation (t

1 , t 2 , t 3 ) represents successive time units. In words, we have

• First time unit: Move contents of PC to MAR.

• Second time unit: Move contents of memory location specified by MAR to MBR. Increment by I the 

contents of the PC.

• Third time unit: Move contents of MBR to IR.

The second and third micro-operations both take place during the second time unit. The third micro-

operation could have been grouped with the fourth withut affecting the fetch operation:

t 1 : MAR ← (PC)

t 2 : MBR ← Memory

t 3 : PC ← (PC) + I

IR ← (MBR)

The groupings of micro-operations must follow two simple rules:

1.  The  proper  sequence  of  events  must  be  followed.  Thus  (MAR  ;  (PC))  must precede  (MBR  ;

Memory)  because  the  memory  read  operation  makes  use  of the  address  in  the  MAR.

2. Conflicts must be avoided. One should not attempt to read to and write from the same register in one

time  unit,  because  the  results  would  be  unpredictable. For  example,  the  micro-operations  (MBR  ;

Memory) and (IR ; MBR) should not occur during the same time unit.

The Indirect Cycle

Once an instruction is fetched, the next step is to fetch source operands. If the instruction specifies

an indirect address,  then an indirect cycle must precede the execute cycle. It includes the following

micro-operations:

t 1 : MAR ← (IR(Address))

t 2 : MBR ← Memory

t 3 : IR(Address) ← (MBR(Address))

The address field of the instruction is transferred to the MAR. This is then used  to fetch the address

of the operand. Finally, the address field of the IR is updated from the MBR, so that it now contains a

direct rather than an indirect address. The IR is now in the same state as if indirect addressing had not



been  used, and  it  is  ready  for  the  execute  cycle.  We  skip  that  cycle  for  a  moment,  to  consider

the interrupt cycle.

The Interrupt Cycle

At the completion of the execute cycle, a test is made to determine whether any enabled interrupts

have occurred. If so, the interrupt cycle occurs. The nature of this cycle varies greatly from one machine

to another. We have the following sequence for the interrupt cycle.

t 1 : MBR ← (PC)

t 2 : MAR ← Save_Address

PC ← Routine_Address

t 3 : Memory ← (MBR)

In the first step, the contents of the PC are transferred to the MBR, so that they  can be saved for

return from the interrupt. Then the MAR is loaded with the address at which the contents of the PC are

to be saved, and the PC is loaded with the address of the start of the interrupt-processing routine. These

two actions may each be a single micro-operation. However, because most processors provide multiple

types and/or levels of interrupts, it  may take one or more additional micro-operations to obtain the

Save_Address and the Routine_Address before they can be transferred to the MAR and PC, respectively.

In any case, once this is done, the final step is to store the MBR, which contains the old value of the PC,

into memory. The processor is now ready to begin the next instruction cycle.

The Execute Cycle

The fetch,  indirect,  and interrupt cycles are simple and predictable.  Each involves a  small,  fixed

sequence  of  micro-operations  and,  in  each  case,  the  same  micro-operations

are repeated each time around. This is not true of the execute cycle. Because of the variety opcodes,

there are a number of different sequences of micro-operations that can occur. Let us consider several

hypothetical examples.

First, consider an add instruction:

ADD R1, X

which adds the contents of the location X to register R1. The following sequence of micro-operations 

might occur:



t 1 : MAR ← (IR(address))

t 2 : MBR ← Memory

t 3 : R1 ← (R1) + (MBR)

We begin with the IR containing the ADD instruction. In the first step, the address portion of the IR is

loaded into the MAR. Then the referenced memory location is read. Finally, the contents of R1 and MBR

are added by the ALU. Again, this is a simplified example. Additional micro-operations may be required

to extract the register reference from the IR and perhaps to stage the ALU inputs or outputs in some

intermediate registers.

Let us look at two more complex examples.

A common instruction is increment and skip if zero:

ISZ X

The content of location X is incremented by 1. If the result is 0, the next instruction is skipped. A possible

sequence of micro-operations is,

t 1 : MAR ← (IR(address))

t 2 : MBR ← Memory

t 3 : MBR ← (MBR) + 1

t 4 : Memory ← (MBR)

If ((MBR) = 0) then (PC ← (PC) + I)

The new feature introduced here is the conditional action. The PC is incremented if (MBR) = 0. This

test and action can be implemented as one micro-operation. Note also that this micro-operation can be

performed during the same time unit during which the updated value in MBR is stored back to memory.

Finally, consider a subroutine call instruction. As an example, consider a branch-and-save-address

instruction:

BSA  X

The address of the instruction that follows the BSA instruction is saved in location X, and execution

continues at location X + I. The saved address will  later be used for return. This is a straightforward

technique for providing subroutine calls. The following micro-operations suffice:

t 1 : MAR ← (IR(address))

MBR ← (PC)



t 2 : PC ← (IR(address))

Memory ← (MBR)

t 3 : PC ← (PC) + I

The  address  in  the  PC  at  the  start  of  the  instruction  is  the  address  of  the  next instruction  in

sequence. This is saved at the address designated in the IR. The latter address is also incremented to

provide the address of the instruction for the next instruction cycle.

The Instruction Cycle

Figure below illustrates the flowchart for instruction cycle.

We assume a new 2-bit register called the instruction cycle code (ICC). The ICC designates the state

of the processor in terms of which portion of the cycle it is in:

00: Fetch

01: Indirect

10: Execute

11: Interrupt



At the end of  each of  the four  cycles,  the ICC is  set  appropriately.  The indirect cycle  is  always

followed by the execute cycle. The interrupt cycle is always followed by the fetch cycle. For both the

fetch and execute cycles, the next cycle depends on the state of the system.

Thus, the flowchart  defines the complete sequence of  micro operations,  depending only on the

instruction sequence and the interrupt pattern.


